On Right-Angled Polygons in Hyperbolic Space joint work with Edoardo Dotti

Simon T. Drewitz

University of Fribourg, Switzerland

January 17, 2018

(Oriented) Right-Angled Polygon

Definition

- finite sequence $(S_0, S_1, \dots, S_{p-1})$ of (oriented) geodesics in \mathbf{H}^n
- $S_i \perp S_{i+1}$ and $S_{i-1} \neq S_{i+1}$ considering $i \mod p$

Attention

in general not planar

Motivation

Delgove & Retailleau (2014)

- \bullet right-angled hexagons in ${f H}^5$
- ullet upper half space model based on quaternions ${\mathbb H}$

Motivation

Delgove & Retailleau (2014)

- ullet right-angled hexagons in ${f H}^5$
- ullet upper half space model based on quaternions ${\mathbb H}$

Dotti & D (2018)

- right-angled p-gons in \mathbf{H}^{p-1}
- ullet upper half space model based on Clifford vectors \mathbb{V}^{p-2}

Overview

- Clifford Algebra
- Upper Half Space Model
- 3 Cross Ratio
- 4 Constructing Right-Angled Polygons

Definition

$$C_n := \langle i_1, \ldots, i_n \mid \forall j \neq k : i_j i_k = -i_k i_j, i_j^2 = -1 \rangle$$

Definition

$$C_n := \langle i_1, \ldots, i_n \mid \forall j \neq k : i_j i_k = -i_k i_j, i_j^2 = -1 \rangle$$

Examples

$$C_0 = \mathbb{R}$$

$$C_1 = \mathbb{C}$$

$$C_2 = \mathbb{H}$$

$$C_n \ni x = \sum_I x_I I$$

with $x_l \in \mathbb{R}$, where the sum ranges over products

$$I=i_{k_1}\cdots i_{k_l}$$

with
$$1 \leq k_1 < \cdots < k_l \leq n$$

$$\therefore \dim_{\mathbb{R}} \mathcal{C}_n = 2^n$$

$$C_n \ni x = \sum_I x_I I$$

Three Involutions

- $\cdot^* : i_{k_1} \cdots i_{k_m} \mapsto i_{k_m} \cdots i_{k_1}$ antiautomorphism
- $ullet \ ': i_{k_1} \cdots i_{k_m} \mapsto (-1)^m i_{k_1} \cdots i_{k_m}$ automorphism
- $\overline{\cdot} = (\cdot')^* = (\cdot^*)'$ antiautomorphism

Clifford Vectors \mathbb{V}^{n+1}

Definition

$$\mathcal{C}_n \supset \mathbb{V}^{n+1} := \left\{ x = x_0 + \sum_{j=1}^n x_j \, i_j \mid x_j \in \mathbb{R} \right\}$$

Clifford Vectors \mathbb{V}^{n+1}

Definition

$$\mathcal{C}_n \supset \mathbb{V}^{n+1} := \left\{ x = x_0 + \sum_{j=1}^n x_j \, i_j \mid x_j \in \mathbb{R} \right\}$$

- real part $\Re(x) := x_0$
- norm $|x|^2 = x \bar{x} = \sum_{j=0}^n x_j^2$
- invertible with $x^{-1} = \bar{x}/|x|^2$

Clifford Vectors \mathbb{V}^{n+1}

Definition

$$\mathcal{C}_n \supset \mathbb{V}^{n+1} := \left\{ x = x_0 + \sum_{j=1}^n x_j \, i_j \mid x_j \in \mathbb{R} \right\}$$

- real part $\Re(x) := x_0$
- norm $|x|^2 = x \bar{x} = \sum_{j=0}^n x_j^2$
- invertible with $x^{-1} = \bar{x}/|x|^2$

Clifford group Γ_n

group generated by all non-zero Clifford vectors

Square Root of a Clifford Vector

Square Root

For $x \in \mathbb{V}^{n+1} \setminus \mathbb{R}_{\leq 0}$ define

$$\sqrt{x} := \frac{|x| + x}{\sqrt{2 \left(\Re(x) + |x|\right)}} \in \mathbb{V}^{n+1}.$$

 $\pm\sqrt{x}$ are the only two Clifford vectors whose square is x.

If n > 1, there are infinitely many square roots of a negative number x.

Hyperbolic Space

Upper Half Space Model

$$\mathbf{H}^{n+2} = \mathbb{V}^{n+1} \times \mathbb{R}_{>0}$$

Geodesics are half circles orthogonal to the bounding plane or vertical lines

$$\partial \mathbf{H}^{n+2} = \mathbb{V}^{n+1} \cup \{\infty\}$$

Geodesics can be given by two Clifford vectors (or one ∞)

Clifford Matrices $\operatorname{GL}_2(\Gamma_n)$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

with

$$a, b, c, d \in \Gamma_n \cup \{0\};$$

$$ab^*, cd^*, c^*a, d^*b \in \mathbb{V}^{n+1};$$

$$ad^* - bc^* \in \mathbb{R} \setminus \{0\}$$

Clifford Matrices $GL_2(\Gamma_n)$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

with

$$a, b, c, d \in \Gamma_n \cup \{0\};$$

 $ab^*, cd^*, c^*a, d^*b \in \mathbb{V}^{n+1};$
 $ad^* - bc^* \in \mathbb{R} \setminus \{0\}$

$\mathrm{SL}_2(\mathcal{C}_n)$

$$\mathrm{SL}_2(\mathcal{C}_{\mathsf{n}}) := \left\{ \mathsf{A} = \left(egin{matrix} \mathsf{a} & \mathsf{b} \ \mathsf{c} & \mathsf{d} \end{matrix}
ight) \mid \mathsf{a}\mathsf{d}^\star - \mathsf{b}\mathsf{c}^\star = 1
ight\}$$

$\mathrm{SL}_2(\mathcal{C}_n)$

$$\mathrm{SL}_2(\mathcal{C}_n) := \left\{ A = egin{pmatrix} \mathsf{a} & \mathsf{b} \ \mathsf{c} & \mathsf{d} \end{pmatrix} \mid \mathsf{a} \mathsf{d}^\star - \mathsf{b} \mathsf{c}^\star = 1
ight\}$$

generated by

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} \mathbf{a} & 0 \\ 0 & \mathbf{a}^{\star - 1} \end{pmatrix}$$

with $t \in \mathbb{V}^{n+1}$ and $a \in \Gamma^n$.

$\mathrm{PSL}_2(\mathcal{C}_n)$

$$\mathrm{PSL}_{2}\left(\mathcal{C}_{n}\right):=\mathrm{SL}_{2}\left(\mathcal{C}_{n}\right)/\left\{ \pm I\right\}$$

 $T \in \mathrm{PSL}_2\left(\mathcal{C}_n\right)$ acts on $\mathbb{V}^{n+1} \cup \{\infty\} = \partial \mathbf{H}^{n+2}$ by orientation preserving Möbius transformations:

$$T(x) := (ax + b)(cx + d)^{-1}$$

Poincaré Extension

$$\operatorname{Isom}^+\left(\mathbf{H}^{n+2}\right) \cong \operatorname{M\"ob}^+\left(n+1\right) \cong \operatorname{PSL}_2(\mathcal{C}_n)$$

Cross Ratio

Definition

Let $x, y, z, w \in \mathbb{V}^{n+1}$ be pairwise different.

$$[x, y, z, w] := (x - z)(x - w)^{-1}(y - w)(y - z)^{-1} \in \Gamma_n \setminus \{0\}.$$

Extend the obvious way for one of the variables $= \infty$.

Cross Ratio

Definition

Let $x, y, z, w \in \mathbb{V}^{n+1}$ be pairwise different.

$$[x, y, z, w] := (x - z)(x - w)^{-1}(y - w)(y - z)^{-1} \in \Gamma_n \setminus \{0\}.$$

Extend the obvious way for one of the variables $= \infty$.

Let T Möbius transformation for $A \in \mathrm{PSL}_2(\mathcal{C}_n)$. Then

$$[T(x), T(y), T(z), T(w)] = (cz + d)^{*-1} [x, y, z, w] (cz + d)^{*}.$$

Remark

 $|[\cdot,\cdot,\cdot,\cdot]|$ and $\Re([\cdot,\cdot,\cdot,\cdot])$ are $\mathrm{PSL}_2(\mathcal{C}_n)$ -invariant but *not* cross ratio itself.

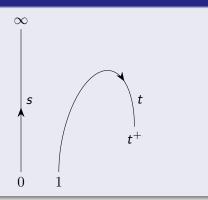
Let $s=(s^-,s^+)$ and $t=(t^-,t^+)$ two geodesics given by their endpoints $s^\pm,t^\pm\in\partial\mathbf{H}^{n+2}=\mathbb{V}^{n+1}\cup\{\infty\}.$

Definition

$$\Delta(s,t) := \left[s^-, s^+, t^-, t^+ \right]$$

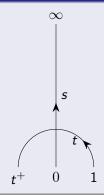
Let $s = (s^-, s^+)$ and $t = (t^-, t^+)$ two geodesics given by their endpoints $s^{\pm}, t^{\pm} \in \partial \mathbf{H}^{n+2} = \mathbb{V}^{n+1} \cup \{\infty\}.$

Geometric Meaning



Let $s = (s^-, s^+)$ and $t = (t^-, t^+)$ two geodesics given by their endpoints $s^{\pm}, t^{\pm} \in \partial \mathbf{H}^{n+2} = \mathbb{V}^{n+1} \cup \{\infty\}.$

Geometric Meaning

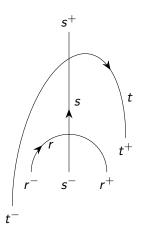


Let $s=(s^-,s^+)$ and $t=(t^-,t^+)$ two geodesics given by their endpoints $s^\pm,t^\pm\in\partial\mathbf{H}^{n+2}=\mathbb{V}^{n+1}\cup\{\infty\}.$

Geodesics s and t

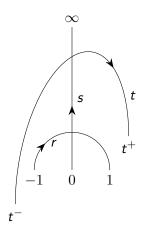
- intersect if $\Delta(s,t) < 0$,
- are orthogonal if $\Delta(s, t) = -1$.

Double Bridge



 $r \perp s \perp t$ with pairwise different endpoints

Standard Configuration Double Bridge



 $r \perp s \perp t$ with pairwise different endpoints

Double Bridge Cross Ratio

Definition

$$\Delta(r,s,t) := \left[s^+, s^-, r^+, t^+\right]$$

Double Bridge Cross Ratio

Definition

$$\Delta(r, s, t) := [s^+, s^-, r^+, t^+]$$

In Standard Configuration

$$\Delta(r, s, t) = [\infty, 0, 1, t^{+}] = (0 - t^{+})(0 - 1)^{-1} = t^{+} \in \mathbb{V}^{n+1}$$

Constructing *p*-gons in \mathbf{H}^{p-1}

Idea of Construction

- ullet parameters $\{q_1,\ldots,q_{p-3}\}\subset \mathbb{V}^{p-2}$
- correspond to double bridge cross ratio in standard configuration

Gauging of Cross Ratios

Let $\{q_1,\ldots,q_{p-3}\}\subset \mathbb{V}^{p-2}$. Consider

$$\phi_i : x \mapsto \sqrt{-2q_i}^{-1}(x+q_i)(x-q_i)^{-1}\sqrt{-2q_i}.$$

Constructing *p*-gons in \mathbf{H}^{p-1}

Idea of Construction

- ullet parameters $\{q_1,\ldots,q_{p-3}\}\subset \mathbb{V}^{p-2}$
- correspond to double bridge cross ratio in standard configuration

Gauging of Cross Ratios

Let $\{q_1,\ldots,q_{p-3}\}\subset \mathbb{V}^{p-2}$. Consider

$$\phi_{i}: x \mapsto \sqrt{-2q_{i}}^{-1}(x+q_{i})(x-q_{i})^{-1}\sqrt{-2q_{i}}.$$

$$0 \mapsto -1$$

$$\infty \mapsto 1$$

$$-q_{i} \mapsto 0$$

$$q_{i} \mapsto \infty$$

Constructing *p*-gons in \mathbf{H}^{p-1}

Idea of Construction

- parameters $\{q_1,\ldots,q_{p-3}\}\subset \mathbb{V}^{p-2}$
- correspond to double bridge cross ratio in standard configuration

Gauging of Cross Ratios

Let $\{q_1,\ldots,q_{p-3}\}\subset \mathbb{V}^{p-2}$. Consider

$$\phi_i: x \mapsto \sqrt{-2q_i}^{-1}(x+q_i)(x-q_i)^{-1}\sqrt{-2q_i}.$$

$$\Phi_i:=\phi_i \circ \phi_{i-1} \circ \cdots \circ \phi_1$$

$$\phi_i^{-1}: x \mapsto \sqrt{-q_i}(1+x)(1-x)^{-1}\sqrt{-q_i}.$$

Deconstructing a p-gon

Let (S_0, \ldots, S_{p-1}) right-angled p-gon.

Gauged Double Bridge Cross Ratios

$$\begin{split} \tilde{\Delta}_{1} &:= \Delta(S_{0}, S_{1}, S_{2}) \\ &\vdots \\ \tilde{\Delta}_{i+1} &:= \Delta\left(\Phi_{i}(S_{i}), \Phi_{i}(S_{i+1}), \Phi_{i}(S_{i+2})\right) \\ &\vdots \\ \tilde{\Delta}_{p-3} &:= \Delta\left(\Phi_{p-4}(S_{p-4}), \Phi_{i}(S_{p-3}), \Phi_{i}(S_{p-2})\right) \end{split}$$

yields a map

{oriented right-angled polygons in \mathbf{H}^{p-1} } \hookrightarrow $(\mathbb{V}^{p-2})^{p-3}$

Reconstructing a p-gon

parameters
$$\{q_1,\ldots,q_{p-3}\}\in\mathbb{V}^{p-2}$$

- fix $S_0 = (-1, 1)$ and $S_1 = (0, \infty)$
- ② $S_2 = (-q_1, q_1)$ since $\Delta(S_0, S_1, S_2) = q_1$
- use gauging: $S_3=\left(\Phi_1^{-1}(-q_2),\Phi_1^{-1}(q_2)\right)$:
- lacktriangle last geodesic S_{p-1} exists and is unique iff $\Delta(S_{p-2},S_0)
 ot\in \mathbb{R}_{\leq 0}$

Example Pentagon in ${f H}^4$

- $S_0 = (-1, 1)$
- $S_1 = (0, \infty)$
- $S_2 =$
- $S_3 =$
- $S_4 =$

Example Pentagon in ${f H}^4$

- $S_0 = (-1, 1)$
- $S_1 = (0, \infty)$
- $S_2 = (-2i, 2i)$
- $S_3 =$
- $S_4 =$

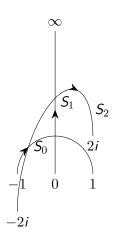
Example Pentagon in ${f H}^4$

- $S_0 = (-1, 1)$
- $S_1 = (0, \infty)$
- $S_2 = (-2i, 2i)$
- $S_3 = (\Phi^{-1}(-2j), \Phi^{-1}(2j)) = (\frac{1}{5}(6i 8j), \frac{1}{5}(6i + 8j))$
- $S_4 =$

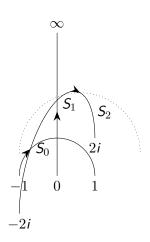
Example Pentagon in ${f H}^4$

- $S_0 = (-1, 1)$
- $S_1 = (0, \infty)$
- $S_2 = (-2i, 2i)$
- $S_3 = (\Phi^{-1}(-2j), \Phi^{-1}(2j)) = (\frac{1}{5}(6i 8j), \frac{1}{5}(6i + 8j))$
- $S_4 =$ common perpendicular to S_3 and S_0

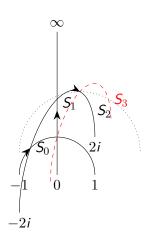
Sketch



Sketch



Sketch



Necessary Condition for Polygons with Full Span

Theorem

If the parameters q_1, \ldots, q_{p-3} give rise to a right-angled polygons such that the intersections are the vertices of a simplex, then

$$\langle 1, q_1, \ldots, q_{p-3} \rangle = \mathbb{V}^{p-2}.$$

François Delgove and Nicolas Retailleau. "Sur la classification des hexagones hyperboliques à angles droits en dimension 5". eng. In: *Annales de la faculté des sciences de Toulouse Mathématiques* 23.5 (2014), pp. 1049–1061. URL: http://eudml.org/doc/275407.

Edoardo Dotti and Simon T. Drewitz. "On right-angled polygons in hyperbolic space". In: *Geometriae Dedicata* (2018). ISSN: 1572-9168. DOI: 10.1007/s10711-018-0357-y.