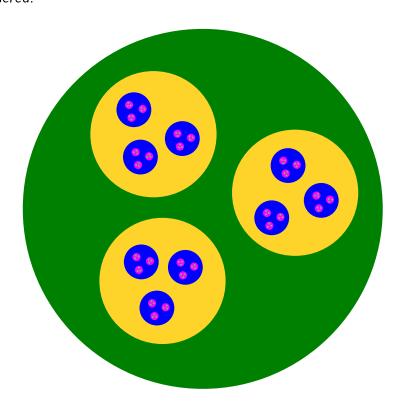


Mathematics Department University of Fribourg

Tuesday, 4/4/2017

Time: 12:15 pm Physics building Lecture room 2.52


Mathematikon

Corina Ciobotaru

Can an infinite number also be finite?

Abstract: We have learned from an early age that given a prime number p for example the sum $\sum_{n=0}^{\infty} p^n = 1 + p + p^2 \dots$ is infinite. Still, from a different perspective $\sum_{n=0}^{\infty} p^n$ is an "integer" of "norm" one. Moreover, $\frac{1}{p^n}$, for n>0 big enough, is also a "big" number.

These phenomena appear in a field that is very different from \mathbb{R} and \mathbb{C} —the field \mathbb{Q}_p of p-adic numbers. The aim of the talk is to define \mathbb{Q}_p , understand its main properties, and then state more advanced questions that can be considered.

